5 resultados para Springs

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper concerns a type of rotating machine (centrifugal vibrator), which is supported on a nonlinear spring. This is a nonideal kind of mechanical system. The goal of the present work is to show the striking differences between the cases where we take into account soft and hard spring types. For soft spring, we prove the existence of homoclinic chaos. By using the Melnikov's Method, we show the existence of an interval with the following property: if a certain parameter belongs to this interval, then we have chaotic behavior; otherwise, this does not happen. Furthermore, if we use an appropriate damping coefficient, the chaotic behavior can be avoided. For hard spring, we prove the existence of Hopf's Bifurcation, by using reduction to Center Manifolds and the Bezout Theorem (a classical result about algebraic plane curves).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: The purpose of this study was to use photoelastic analysis to compare the system of forces generated by retraction T-loop springs made with stainless steel and titanium-molybdenum alloy (TMA) (Ormco, Glendora, Calif) with photoelastic analysis. Methods: Three photoelastic models were used to evaluate retraction T-loop springs with the same preactivations in 2 groups. In group 1, the loop was constructed with a stainless steel wire, and 2 helicoids were incorporated on top of the T-loop; in group 2, it was made with TMA and no helicoids. Results: Upon using the qualitative analysis of the fringe order in the photoelastic model, it was observed that the magnitude of force generated by the springs in group 1 was significantly higher than that in group 2. However, both had symmetry for the active and reactive units related to the system of force. Conclusions: Both springs had the same mechanical characteristics. TMA springs showed lower force levels. (Am J Orthod Dentofacial Orthop 2011;140:e123-e128)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ATMA (Ormco Corp, Glendora, Calif) T-loop spring (TTLS), preactivated with a gable bend distal to the loop, holds promise for producing controlled tipping of the canines and translation of the posterior segment. However, there is currently no consensus as to where the preactivated gable bend or the loop should be placed, what the height of the loop should be, or how the interbracket distance changes the moments produced. Using the Loop software program (dHal, Athens, Greece), we systematically modified a .017 x .025-in TTLS (10 x 6 mm) that was preactivated with a 45 degrees gable bend distal to the loop, and simulated the effects. As the gable bend was moved posteriorly, the moment increased at the posterior bracket more than it decreased at the anterior bracket. As the loop was brought closer to the anterior bracket, the posterior moment decreased at the same rate that it increased anteriorly. As the loop was increased in size, the moments increased both posteriorly and anteriorly. As the interbracket distance increased, the posterior moment decreased, and the anterior moment remained constant. We concluded that the size of the loop should be slightly increased, to 10 x 7 mm, and it should be placed 2 mm from the anterior bracket, with a preactivation bend of 45 degrees, 4 to 5 mm from the posterior bracket (after 4 mm of activation).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Our objectives were to determine whether there are changes on the load deflection rate (L/DP) and the average force (FP) of the superelastic pseudoplateau, and whether permanent deformation is changed in nickel-titanium closed-coil springs (CCSs) after 6 months of clinical use. Methods: Twenty-two nickel-titanium CCSs (Sentalloy 100 g; Dentsply GAC, York, Pa) were subjected to tensile mechanical testing at 37 degrees C on activations varying from 3.2 to 16.0 mm before and after 6 months of clinical use. A regression line was fitted over the most horizontal area of the unloading part of the stress-strain graph of every CCS, and its slope was used as L/DP. The FP was determined by the midpoint of the longest segment of the curve that could be fit within the regression line with a R-2 of at least 0.999, and permanent deformation was determined graphically by obtaining the strain value when the measured stress reached zero. The data were analyzed by 3 analyses of variance at 2 levels, with 5% of significance. Results: Time and activation significantly influenced the variables tested (P < 0.001). Time increased the L/DP and permanent deformation but decreased the FP. Activation decreased L/DP, FP, and permanent deformation. Significant interactions between time and activation were detected for FP (P = 0.013) and deformation (P < 0.001). Conclusions: After 6 months of active clinical use, the analyzed springs had a significant but small increase in their L/DP; FP dropped up to 88%, and the CCSs deformed up to 1.26 mm.